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ABSTRACT 

This thesis is written to document the design and use of an object-oriented, 

numerical simulation of thermoacoustic devices. The resulting expert system code 

entitled "Design Simulation for Thermoacoustic Research", or DSTAR, allows a unique 

new approach for the rapid design and simulation of thermoacoustic devices. Past 

approaches to thermoacoustic modeling have involved the use of "disposable" algorithms 

coded to model one specific device. DSTAR uses a Windows™ compliant graphical user 

interface to construct any given thermoacoustic model at runtime. As a result, the models 

can be developed quickly and without any revision of the computer code. The approach 

to simulation involves the solution of a one-dimensional acoustic wave equation 

simultaneously with an energy flow equation from one end of the user-specified device 

geometry to the other in addition to various lumped acoustical elements. The resulting 

steady-state solution is displayed in both graphical and textual output. Considerable 

effort was given to preserving the flexibility and breadth of the possible simulations, in 

addition to allowing easy modification of the source code for new thermoacoustic 

components. To demonstrate the utility of the code, a thermoacoustic prime mover was 

modeled and then optimized for better performance. 
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I.      INTRODUCTION 

Thermoacoustic devices come in the form of prime movers and heat 

pumps. A prime mover is a heat engine in which heat-flow from a high 

temperature reservoir to a low-temperature sink generates sound. In a heat 

pump, or refrigerator, the opposite occurs. Here the addition of acoustic 

power moves heat from a low temperature reservoir to a high temperature 

sink. The cycles of these acoustic heat engines can be accomplished with few 

or no moving parts. As such, these devices are inherently simple and 

reliable. 

A.       THERMOACOUSTIC ENGINE MODELS 

The history of thermoacoustics dates back to the eighteenth century 

but the analysis and design of thermoacoustic heat engines is a relatively 

new science. Since the establishment of the theoretical foundation for 

thermoacoustics by Nikolaus Rott and his coworkers, physicists have had the 

means to model the acoustic heat engine. Computer codes have been 

developed to aid in the design and simulation of these devices. However, 

these codes have been "disposable" (i.e. written to model one specific device) 

and cumbersome to use. Disposable codes require extensive rewriting each 

time a given device configuration changes. This re-coding is both time 

consuming and onerous. As such, modeling of thermoacoustic heat engines 

has been tedious and has detracted from the overall goal of producing 

efficient, well designed devices. 



B. OBJECTIVE 

The goal of this thesis project is to produce a new expert system code to 

model thermoacoustic devices. The code should be easy to use as well as 

proving the flexibility to model many types of thermoacoustic engines without 

rewriting the code. It should be designed so that incorporations of new 

thermoacoustic algorithms are accomplished with relative ease. Lastly, speed 

of computation should be considered in accomplishing the above goals. 

By its nature, this project is very multi-disciplinary. Although the 

simulation is based in physics, the implementation required aspects of . 

numerical analysis as well as computer science. 

C. THESIS ORGANIZATION 

Chapter II begins by describing qualitatively the foundations of 

thermoacoustic theory, A basic understanding of the theory will give the 

reader added insight into the nature of the simulation and its operation. 

Chapter III describes the primary mathematical techniques used to 

solve the differential equations describing a thermoacoustic device. These 

techniques involve advanced numerical integration methods, matrix algebra, 

and multi-dimensional root finding algorithms. 

Chapter IV details the computational methodology used to encapsulate 

the numerical methods and device geometry into a coherent scheme for 

thermoacoustic modeling. It is the object-oriented nature of the code, 

described in this chapter, which results in a simulation that is both flexible 

and easy to use. 

Chapter V provides a guide for the simulation user interface. Here, the 

use of the interface is described rather than the code required to create it. 



Chapter VI shows a practical example of the simulation by modeling a 

previously built thermoacoustic prime mover and then modifying its design to 

improve efficiency. 

Lastly, Chapter VII offers some conclusions about the resultant code 

and some suggestions for future work. 





II.     THERMOACOUSTIC HEAT ENGINES 

Thermoacoustic heat engines use acoustic waves in a resonant vessel 

to pump heat from a lower temperature reservoir to one of higher 

temperature, or conversely, use an externally imposed temperature gradient 

to produce acoustic waves. Much of our analytical understanding 

thermoacoustic devices stem from the work of Nikolaus Rott and his 

coworkers. Rott published a series of papers beginning in 1970 which laid the 

theoretical foundation for the work that continues today.   Rott's theory is 

based on a linearization of the Navier-Stokes, continuity, and energy 

equations, with sinusoidal oscillations of all variables [Ref. l:p. 23]. A 

theoretical description as well as the complete analytic treatment are 

provided by Swift [Ref. 2] and Wheatley et. al. [Ref. 3 & 4] and are 

paraphrased herein. 

A.  HEAT ENGINE EFFICIENCY AND THE CARNOT CYCLE 

All heat engines can operate in one of two fundamental modes as 

shown in Figure 2.1. The first mode, that of a prime mover, involves the flow 

of heat from a higher temperature reservoir to one of lower temperature. In 

the process of this heat-flow, some of the heat is converted to usable work. 

For the alternate heat pump mode of operation, the opposite occurs. In a 

heat pump, the addition of work pumps heat from a low to a high 

temperature reservoir.   Ideally, an engine can be functionally reversible but 

practically most heat engines are designed to operate in only one mode. 

The Carnot cycle represents the ideal reversible thermoacoustic heat 

engine cycle. This four-step cycle, as illustrated in Figure 2.2, involves two 

adiabatic steps and two isothermal steps. During the adiabatic compressions 



and expansions, no heat-flow occurs and entropy remains fixed. As a result, 

any work flux that occurs will cause a corresponding change in the local 

temperature of the medium. Conversely, during the isothermal processes, 

the temperature is fixed, and flows of entropy, work, and heat occur. For the 

Carnot cycle, the change in entropy along one isotherm exactly balances that 

Heat Engine Modes 

Prime Mover 

SS//////////////////, 
Qh 

Heat Pump 

Y////////f//////////S 

Qh 

Engine w\ W Engine 

'////////////////////      V//////////////////S 

1st Law: Qh=W+Qc 

2nd Law: &<& 

W      T -T 
Efficiency = — < —  

QH 

1st Law: W+Qc=Qh 

2nd Law: ^<9±. 

C.O.P. sÄ< 
W T -T 1h      lc 

Figure 2.1. Heat engines can operate in two fundamental modes. As a prime 
mover, the heat engine converts some of the heat flowing from a hot 
temperature to a cold temperature into work. As a heat pump, the flows of 
heat and work are reversed. The first law of thermodynamics details the 
fundamental relationship that exists between the heat and work. The second 
law requires that the entropy created per cycle must be positive or zero. The 
resultant prime mover efficiency and heat pump coefficient of performance 
(C.O.P.) are therefore bounded as shown. Note, the C.O.P. for a refrigerator 
is defined as Q/W. See Appendix B for variable definitions. [Ref. 3:p. 4] 
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along the other, hence there is no net change in entropy over the entire cycle. 

This ideal process, carried out in near equilibrium conditions, demonstrates 

the upper bound on heat engine efficiency that is imposed by the first and 

second laws of thermodynamics. [Ref. 3:p. 2-4] 
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Figure 2.2. The Carnot cycle and associated temperature-entropy and 
pressure-volume diagrams. This near-equilibrium cycle represents the most 
efficient manner in which a heat engine may operate. The area enclosed by 
each of the pressure-volume diagrams equals the net work done by or on the 
engine in the complete cycle. [Ref. 3:p. 6] 



In practice, heat engines do not operate in near-equilibrium cycles. 

Instead, inherent irreversibilities due to temperature and pressure gradients 

generate entropy and as a result, decrease efficiency. Furthermore, a cycle 

that operates at maximum efficiency (i.e. near equilibrium) will have, in 

general, very low power output. [Ref. 3: pp. 2-4] 

B.      ACOUSTIC HEAT ENGINES 

1.        Requirements of Operation 

Some irreversible processes that decrease heat engine efficiency are, by 

nature, central to an acoustic heat engine's operation. An acoustic heat 

engine is one in which the reciprocating cycles are accomplished without the 

use of moving parts, but instead by acoustic oscillations. These engines 

require the irreversibility of heat conduction across a. temperature gradient to 

provide the necessary phasing of the thermodynamic cycles. As such, 

acoustic heat engines are intrinsically irreversible thermodynamically, but, 

as we will see, functionally reversible. Figure 2.3 shows the basic structure 

for the two types of acoustic heat engines. 

The requisite phasing of an acoustic heat engine is accomplished by the 

introduction of a second thermodynamic medium into the heat engine's cycle. 

The presence of a second medium alters thermodynamic phase relationships 

that exist within the oscillating working fluid alone. This second medium 

usually takes the form of a set of thinly spaced plates known as the stack. 

This stack will have, in general, a thermal gradient along the direction of 

acoustic oscillations. As acoustic oscillations occur in the engine, gas parcels 

move back and forth across the surface area provided by the plates. Since the 

pressure oscillations of the parcel are nearly adiabatic, compressions and 
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expansions will induce accompanying changes in temperature. In addition to 

the temperature changes brought about by the acoustic oscillations, a gas 

parcel will also experience changes in temperature due to heat-flow from (or 

to) the stack material and the thermal gradient that is imposed therein. 

Basic Acoustic Heat Engine Structure 

Ch 

Q„ 

nUIIIHIIIHlIIIIHI 
,! i 

Work 

Heat Exchanger 

Stack 

Heat Exchanger 

Acoustic 
Resonator 

Prime Mover 

Work! 

I 

Driver 

Heat Exchanger 

Stack 

Heat Exchanger 

Acoustic 
Resonator 

Heat Pump 

Figure 2.3. The basic structure of the two types of acoustic heat engines. The 
prime mover uses the externally applied temperature gradient to create 
acoustic waves. The heat pump absorbs work from an acoustic wave and 
pumps heat from a lower to a higher temperature. The interaction of two 
different thermodynamic media in the stack produces the resultant 
thermoacoustic effects. 

If a gas parcel is sufficiently distant from the stack plates, this process of 

heat-flow is not instantaneous, however. Instead there is a lag between the 

motion of the gas parcel and the temperature change that occurs. This 

latency in the temperature change is a consequence of the distance of the 



parcel from the stack and its relatively poor thermal contact with it. The 

resultant time lag introduces the necessary phasing required to articulate the 

acoustic heat engine cycle. 

2.       The Acoustic Heat Engine Cycle 

To describe the physical processes that occur in an acoustic heat engine 

cycle, we follow in detail a gas parcel as it completes an oscillation in the 

presence of a stack plate. This simple model serves to illustrate the 

underlying theory. 

Not all parts of the oscillating gas contribute equally to the 

thermoacoustic effect. Only the parcels of gas that are at the appropriate 

lateral distance from the stack material play an important role. The thermal 

penetration depth, 8K, is approximately the distance that heat can diffuse 

through the gas during the time l/oo, where co is 2TC times the acoustic 

frequency. The parcels of gas that are approximately 8K away from the stack 

plates will have sufficient phasing of the movement and thermodynamics to 

articulate the necessary cycle. For parcels closer than one thermal 

penetration depth from the plate, the temperature of the gas closely mirrors 

that of the plate. Conversely, parcels much farther than 5K have insufficient 

time during the acoustic oscillation to absorb heat from the stack. 

Furthermore, at one thermal penetration depth, the thermal expansion and 

contraction will be in the right phase with respect to the oscillating pressure 

to do (or absorb) net work.   Thus, both the heat-flow and the work-flow will 

be a maximum around this distance. It is therefore these parcels of gas that 

are the primary carriers of heat and work in an acoustic heat engine. 

The stack temperature gradient and its relative magnitude with 

respect to the adiabatic temperature changes of the oscillating gas parcels 

provide a key mechanism for completion the acoustic heat engine cycle. As 
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the gas parcel oscillates back and forth across a stack plate, it will be warmed 

and cooled as a result of the acoustic pressure oscillations. Additionally, as 

the parcel moves along the plate, the parcel sees differing plate temperatures. 

If the resulting temperature of the gas parcel is higher than the local 

temperature of the plate, heat will flow from the gas to the plate. Conversely, 

if the gas is cooler, heat will flow from the plate to the gas. 

The critical temperature gradient is one for which the adiabatic 

temperature change in the gas parcel just equals the stack temperature 

change through which the parcel has just moved. At this gradient, there will 

be no net heat or work flow. Additionally, the sign of the work-flow is also 

dependent on the critical temperature gradient.   For the prime mover mode, 

the local pressure is higher as heat-flows from the parcel to the plate than it 

is when heat-flows from the plate to the parcel. As a result, net work is 

added to the acoustic oscillation. In the heat pump, the opposite occurs and 

work is absorbed from the acoustic wave. Consequently, the critical 

temperature gradient marks the boundary between the heat pump and prime 

mover modes of operation. By controlling the stack temperature gradient, we 

can reverse the operation of the acoustic heat engine from that of a prime 

mover to that of a heat pump. Thus, although the processes of the acoustic 

heat engine are irreversible, the heat engine is functionally reversible. 

Figure 2.4 shows the acoustic heat engine cycle for a prime mover. The cycle 

for a heat pump is the exact reverse. 

3.       Heat and Work 

In general, the length of the stack is greater than the displacement of 

any given gas parcel during an oscillation. Consequently, there exists an 

entire train of adjacent gas parcels, each constrained in short longitudinal 

oscillations, extending the length of the stack. 

11 



ACOUSTIC HEAT ENGINE CYCLE (HOFLER TUBE - PRIME MOVER) 
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Figure 2.4. The acoustic heat engine cycle for a prime mover. As the gas 
parcel oscillates in the presence of the stack plates, both the adiabatic 
temperature change as well as local stack temperature play an important 
role. When the temperature of the adjacent plate is higher than the parcel 
temperature, heat will flow from the plate to the parcel. At the other end of 
the cycle, heat will flow from the parcel to the plate. Since the pressure 
during the heat-flow expansion step is higher than the pressure during the 
heat-flow compression step, net work is performed on the acoustic wave. For 
the heat pump mode of operation, all flows of heat and work are reversed and 
work is absorbed from the acoustic oscillation. [Ref. l:p. 23] 
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Only parcels of gas on the end of the plate contribute to the net heat- 

flow. As the gas parcels oscillate, each absorbs heat at one end of its 

displacement and rejects it at the other. However, since the location of 

absorption for one parcel coincides with that of rejection for an adjacent 

parcel, no net heat-flow exists in the interior of the stack. Only at the stack 

ends, where the thermodynamic symmetry is broken, can heat-flow occur. 

For a prime mover, parcels oscillating beyond the cold end of the stack have 

nowhere to deposit the heat acquired during adiabatic warming. Instead, 

these parcels complete their round-trip oscillation and return to thermal 

contact with the end of the stack. Since the heat deposited by the adjacent 

parcel (still in thermal contact with the stack) will remain uncompensated, 

the cold end of the stack will begin to heat up. Consequently, a heat 

exchanger is used to remove the heat deposited and maintain the desired 

temperature gradient.   Similarly, if the hot end of the stack is not supplied 

with a source of heat, the driving temperature gradient will also begin to   . 

fade. So long as the length of the stack does not exceed one quarter of the 

acoustic wavelength (The zero heat-flow at pressure and velocity nodes would 

otherwise alter its performance), the heat-flow remains independent of the 

stack length. 

Since each gas parcel in the "bucket brigade" does (or absorbs) net 

work, the entire chain contributes to the overall work-flow. As a result, the 

total work done on (or by) a gas is roughly proportional to the length of the 

stack. 

4.       The Rott Wave and Energy Flow Equations 

Though the previous sections were designed to give the reader a basic 

understanding of the theory behind thermoacoustic engine operation, a 

quantitative analysis would have included a lengthy derivation of the wave 
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and energy flow equations of Nikolaus Rott and modified by G. W. Swift. It is 

these equations that provide the foundation upon which numerical models of 

thermoacoustic devices are built. As such a derivation is beyond the scope of 

this thesis, the equations are presented in Appendix B without further 

explanation. A complete treatment is available in Ref. 2. 

In addition to the Rott/Swift equations, a set of normalizations are 

defined and a set of non-dimensional thermoacoustic equations are also listed 

in Appendix B. It is these non-dimensional equations that are implemented 

in DSTAR and enable the use of normalized parameters. 

When designing a new engine device, normalized parameters are more 

fundamental quantities and are relatively independent of the scale of the 

device. With experience, the designer discovers that fairly narrow ranges of 

values for the normalized parameters lead to optimal performance over a 

wide range of devices. Also, the operating frequency or a specified tube 

length can be allow to vary under the control of the boundary value solver, as 

a means of meeting the resonance condition. Under these design conditions, 

the device model is a rather "plastic" entity whose shape or geometry may 

vary from one iteration of the model to the next. 

When modeling existing experimental devices, parameters can be 

expressed in standard mks or cgs units in order to simulated the experiment 

in concrete terms. As such, the "Design" and "Simulation" tasks are 

significantly different and both can be performed efficiently with DSTAR. 

14 



III.   NUMERICAL COMPUTATIONAL METHODS 

A.       FIFTH ORDER ADAPTIVE STEPSIZE RUNGE-KUTTA 

In simulating a thermoacoustic device, it is necessary to solve systems 

of first order ordinary differential equations. For some components, the 

analytic solutions can be easily obtained. However, for the bulk of the devices 

of interest, a numerical solution is required. To this end a Runge-Kutta 

method was used to solve the basic initial value problems. The Runge-Kutta 

algorithms used in DSTAR are derived from the code available from the 

University of British Columbia [Ref. 5]. These algorithms provided a useful 

foundation on which to develop the computational approach used in the code. 

1.       Runge-Kutta Methodology 

There is a wide range of numerical methods available to solve ordinary 

differential equations. The simplest, and perhaps most well known method, 

is the forward Euler method. The forward Euler method takes the solution 

value, yn, at position xn and advances it to position xn+1 using the value of the 

derivative f(y^ xj at xn, 

yn+i = yn+
hf(yn,x„) , (3.1) 

where h = Ax. This method approximates a straight-line solution between the 

two points. While this method is fast, it is also inherently inaccurate. [Ref. 5] 

In contrast to first order schemes such as the forward Euler method, 

Runge-Kutta methods are higher order, one-step schemes that make use of 

information at different stages between the beginning and end of a step. They 

are generally more stable and accurate than the forward Euler method but 
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are still relatively simple [Ref. 5]. For example, in a second order Runge- 

Kutta scheme, the derivative at the starting point is used to approximate the 

derivative at the midpoint of the interval. This midpoint derivative is then 

used to calculate the solution at the end of the interval.   The midpoint 

method, or 2-stage Runge-Kutta, is written as follows [Ref. 5]: 

K=hf(y„,xn) 

k2=¥(yn+-kl,xn+-h) (3.2) 

yn+i =yn+k2- 

In this case, k2 and k2 are intermediary values calculated in producing the 

final solution yn+1. Higher order schemes will involve more intermediary 

terms but follow the same basic principle.   A general s-stage Runge-Kutta 

method is written as, 

n 

K =¥(yn + ^bukJyath), i = l,...,s 

n 

yn+i = yn+Y.cJkJ 

(3.3) 

j=i 

The Runge-Kutta formula coefficients, ai7 btj, and c, are expressed in a tabular 

form known as the Runge-Kutta tableau as shown in Table 1. 
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i at b, Ci 

1 a, bn b12    .. ■    bls Ci 

2 a2 b21 b22    ■• •    b2s c2 

; : : : ■ \ 

s as bsl bs2    - •    bss cs 

j = 1 2     .. s 

Table 3.1. The Runge-Kutta tableau. 

2.       Fehlberg RK45 

Among the higher order Runge-Kutta methods, the Fehlberg RK45 

provides a good compromise between speed of computation and accuracy of 

results. Additionally, this fifth order routine provides the added benefit of 

error estimation by the use of an embedded fourth order scheme. Both the 

fifth order and the embedded fourth order scheme use the same intermediary 

stages, krk6, but compute the final step using different coefficients, ct and c*. 

yn+i = Vn + cA + c2k2 + c3k3 + c4k4 + c5k5 + c6k6  5th order 

yn+i = yn+ elk.+ c*2k2 + czkz + c*4k4 + chk5 + c*6k6   4
th order 

(3.4) 

(3.5) 

The difference of these two results can be taken as an error estimate 

for the fourth order method. Since higher order methods are, in general, 

more accurate than lower order methods, the fourth order error can, in turn, 

be used as an estimate of the error for the fifth order method. This error 

estimate can now be used to adjust the stepsize, h, such that the integration 

is completed within the user-specified tolerances. This adaptive stepsize 

methodology enables the integration speed to be commensurate with the 
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nature of the differential equations being solved. For slowly varying 

functions, the adaptive stepsize routine will require very few intermediate 

points to compute the integration. For rapidly changing functions, the 

stepsize need only be reduced as small as is necessary to produce the desired 

accuracy. 

The coefficients for the embedded Runge-Kutta scheme used in DSTAR 

are shown in Table 2 [Ref. 5]. 

i at *v Ci Ci 

1 37/378 2825/27648 

2 1/5 1/5 0 0 

3 3/10 3/40 9/40 250/621 18575/48384 

4 3/5 3/10 -9/10' 6/5 125/594 13525/55296 

5 1 -11/54 5/2 -70/27 35/27 0 277/14336 

6 7/8 1631/55296 175/512 575/13824 44275/110592 253/4096 512/1771 1/4 

j = 1 2 3 4 5        6 

Table 3.2. Cash-Karp embedded Runge-Kutta tableau 

B.       NEWTON-RHAPHSON METHOD FOR MULTI-DIMENSIONAL 
ROOT FINDING 

Rarely in solving the ordinary differential equations that describe a 

thermoacoustic device are all of the initial conditions completely known. 

Instead, one or more of the initial conditions is guessed, a solution is 

evaluated, and then boundary conditions are compared to the solution. If 

there is a match, the solution is correct. If not, the guess must be altered and 

a new solution computed. This process is repeated until the solution and 

boundary values converge.   Consider the difference between a given target 

boundary condition and the corresponding calculated solution as a function in 
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and of itself. Then the problem reduces to finding the root, or zero, of this 

function. To this end, a Newton-Rhaphson method for root finding is 

employed by DSTAR. 

The Newton-Rhaphson method involves evaluation of the function and 

its derivative at the guessed root position. The derivative is used to construct 

a geometric tangent to the function at this position. The tangent line 

intercept is then chosen as the next guess for the root. This process is 

iterated until the root is found. Algebraically, this process is equivalent to 

expanding the function in a first order Taylor series to make the linear 

approximation, 

f(x + ö)~f(x) + f'(x)ö , (3.6) 

to determine the next point to try, x+8: 

f(x + S) = 0-^S = -^p-. (3.7) 
fix) 

If the iteration brings the function close to a local maximum or minimum, 

8 may become very large and the method may fail. Aside from these possible 

failures, the rate of convergence on the root is very large. [Ref. 6:p. 362] 

Figure 3.1 gives a graphic illustration of the Newton-Rhaphson method 

of root finding [Ref. 6:p. 363]. 

19 



Figure  3.1.     Graphical  depiction  of the  Newton-Rhaphson 
method for finding the root of a function. 

The Newton-Rhaphson method can easily be extended for multi- 

dimensional root finding. The general problem computed in the DSTAR 

model consists of an equal number of guessed initial conditions and targeted 

boundary conditions.   If there are N such guesses and targets, then the 

problem gives N functions to be zeroed involving variables xir i=l,2,...,N, 

Fi(x1,x2,...,xN) = 0  i=l,2,...,N , (3.8) 

where x is now the entire vector of variables and F is the entire vector of 

functions to be zeroed. The Newton-Rhaphson method is now extended to N 

dimensions as [Ref. 6:p. 381], 

F,.(x + <fc) = F,(x) + £|^<St.+... 
j=\ OXj 

(3.9) 
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Noting that the matrix of partial derivatives in equation (3.9) is the Jacobian 

matrix J, the equation can be rewritten in matrix notation as [Ref. 6:p. 381]: 

F(x + <5x) = F(x)+J-<5x + higher order terms. (3.10) 

Again the left-hand side is equated to zero and the following equation results 

[Ref. 6:p. 381]: 

J<5x = -F. (3.11) 

This matrix equation can now be solved for the guess corrections, 8x, using 

the matrix decomposition method described in the next section. This 

correction vector is added to the guess vector x, and the process is repeated 

until the boundary conditions are satisfied. The computational algorithm 

used in the DSTAR model is a modified version of the MNEWT algorithm 

provided in [Ref. 6]. 

C.      LOWER-UPPER TRIANGULAR MATRIX DECOMPOSITION 

1.        Solving Linear Systems Using LU Decomposition 

To solve the matrix equation (3.11), the DSTAR code makes use of a 

Gaussian ehmination scheme known as LU decomposition. Given the linear 

system Ax = b, the matrix A can be decomposed into two triangular matrices, 

L and U, 

A = LU, (3.12) 
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where L is lower triangular and U is upper triangular. Once the matrix has 

been decomposed, the solution to the linear system can be easily solved in the 

following manner: 

Ax = b   L(Ux)=b   LetUx = y (3.13) 

Now solve for the vector y in the resulting equation, 

Ly = b (3.14) 

The procedure is straightforward since a triangular matrix system may 

be easily solved by forward or backward substitution. In this case, the 

corresponding system of linear equations is, 

Luy{ =bi yi = r 

L2ly,    +L22y2 =b2    ->    y2=^hllll 

Ll\y\     +L32yi    + L33 ^3 =h : 

Once y is a known, it is possible to solve for x in, 

(3.15) 

Ux = y , (3.16) 

in the same manner. [Ref. 7] 
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2.       The LU Decomposition Algorithm 

The LU decomposition is accomplished through the use of Crout's 

algorithm [Ref. 6]. This algorithm takes the input matrix A and performs an 

overwrite of the ith row elements according the formula [Ref. 7], 
j-i 

k=l 
(3.17) 

k=\ 

which results in a combined matrix containing both the upper and lower 

triangular forms. Since a given LU decomposition is not unique, the 

algorithm is initiated by choosing the diagonal elements of the L matrix to be 

1. This choice of diagonal elements precludes the need to store them and 

allows the combined matrix" form. For a 4x4 matrix the result would be, 

Un Un Ua u» 
L2I U22 UB u24 

**. L32 ^33 uM 

L4i L42 ^43 uM 

(3.18) 

This result can then be used as shown previously to. solve the matrix 

equation (3.11). 
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IV.    PROGRAM ORGANIZATION AND OPERATION 

A.       DSTAR AND OBJECT ORIENTED PROGRAMMING 

At its most fundamental level, any computer simulation is merely an 

algorithmic representation of the physical objects it describes. With the 

advent of object oriented programming, these algorithms have become both 

easier to construct and to maintain as faithful representations of real-world 

objects. It is with these advantages in mind that DSTAR was written in C++, 

the fully object oriented version of the C programming language. 

Before proceeding further with the description of the DSTAR 

computational approach, it will become advantageous to briefly define some 

of the more important aspects of C++ object oriented programming: 

Object — An essentially reusable software component that models items 

in the real world [Ref. 8:p. 10]. 

Classes - The programmatic description of an object (i.e. the code). 

This includes both the data members (variables) as well as the methods 

(functions) that manipulate the data. 

Inheritance — A form of software reusability in which new classes are 

created from existing classes by absorbing their attributes and behaviors and 

embellishing these with the capabilities the new classes require [Ref. 8:p. 

520]. A class that inherits from another class is said to be a derived class. 

The class from which another class is derived is said to be the base class. 

Virtual Functions — A method in a derived class that can be accessed 

through a pointer to its base class [Ref. 8:p. 565]. 

Polymorphism - The ability for objects of different classes related by 

inheritance to respond differently to the same member function call [Ref. 8: 

p.566]. 
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Abstract Base Class - A base class that is never instantiated and 

merely serves as a template from which derived classes will be defined. 

Operator Overloading - Allows the objects to respond to commonly 

used operators (e.g. + or -). 

The ANSI Standard Library provided with most modern C++ compilers 

uses operator overloading and polymorphism to provide complex number 

support comparable to that of Fortran 77. This is useful for thermoacoustic 

calculations where sinusoidal time dependence is assumed in the form of an 

eiut factor. 

Similarly, overloading can be used to extend the math capabilities for 

vector and linear algebra systems. The class library MV++ [Ref. 9] is used in 

DSTAR to provide "loopless" vector operations comparable to that of Fortran 

90. 

The DSTAR program makes use of all of these advanced features of the 

C++ language resulting in code that is both easy to maintain and to extend 

for greater future capability. 

B.       THE DSTAR OBJECT MODEL 

The structure of the DSTAR object model provides the central 

mechanism by which solutions to the one-dimensional wave equations for a 

given device geometry are solved.   Through careful design and interaction of 

the objects, the model was created such that the precise definition of a 

particular device is not known at compile time. Instead, the user dynamically 

creates the design of a thermoacoustic engine at run time using the graphical 

interface. This is perhaps the key advantage of DSTAR over previous codes. 

Such dynamic construction of a particular simulation allows rapid 
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prototyping of thermoacoustic devices without having to rewrite the 

simulation code. 

1.       The Core Classes 

To facilitate the run time definition of a thermoacoustic device, several 

key classes were developed which model the actual real world components. 

These core classes represent the thermoacoustic engine as a whole, its 

constituent components, and the physical attributes that define these 

components. 

a) CTAEngine Class 

The highest level object that is modeled is the thermoacoustic 

engine itself. This object, which is encapsulated in the class CTAEngine, 

provides the variables and methods that are common to the thermoacoustic 

device as a whole. This includes such things as the physical constants for the 

enclosed gas as well as the design frequency of the acoustic oscillations. 

Additionally, the CTAEngine class provides all the methods required to 

compute a continuous solution to the differential equations from one end of 

the device to the other. When boundary, conditions are present, the 

CTAEngine iterates the solutions to the model until these conditions are 

satisfied. These boundary value problem solutions are calculated through use 

of the Newton-Rhaphson algorithm described in chapter 3. 

b) CTAModule Class 

Figure 4.1 shows an example of a thermoacoustic device, the 

Hofler Tube [Ref. 4], which has been subdivided into individual components. 
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These components or modules provide the next level of programmatic 

abstraction in the DSTAR model. Classes that are derived from the abstract 

base class, CTAModule, represent each component of the thermoacoustic 

engine. This base class provides the variables and methods common among 

all the thermoacoustic components. The Runge-Kutta integrator, previously 

described, is among the methods incorporated in this class. Since the 

CTAModule class is abstract, no objects of this class are ever instantiated. 

Instead, each particular component class is derived from CTAModule and 

thereby inherits its capabilities. This allows each component to be 

fundamentally different with respect to its geometry and computational 

methodology (i.e. the differential equations) and yet still conform to a 

common interface. CTAModule derived classes include models of tubes, 

stacks, heat exchangers and lumped elements as shown in Figure 4.2. 

The CTAModule class contains several virtual functions. The 

propagate () method holds all the code that is required to compute the 

solution to the wave equation from one end of the component to the other. 

Ordinarily this would consist of a simple Runge-Kutta integration to find the 

solution. However, some components may have analytic solutions while 

others may require special mathematical treatment. Hence, the method 

propagate () is ordinarily overridden in the derived classes to provide the 

unique computational code required for that specific component. 

The second virtual function in the CTAModule class is the 

derivative () method. As its name suggests, this method contains the code 

that provides numerical derivatives for the appropriate differential equations. 

These derivatives are required for the Runge-Kutta integration algorithm 

shown in equation (3.3). As such, the derivative () method must be 

uniquely implemented in all CTAModule derived classes. 
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Figure 4.1. The Hofler Tube and its constituent components. 
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Figure 4.2. CTAModule class and its derived class hierarchy. 
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c)       CTAElement Class 

The CTAElement class provides the final basic building block of 

the DSTAR object model. Objects of this class are essentially variables that 

represent the physical structure of any given component (e.g. radius, length, 

etc.). In addition to providing the double precision value ofthat variable, the 

CTAElement object contains other vital information. This includes items 

such as the string name displayed by the user interface as well as Boolean 

values that flag different computational modes of the model. The objects of 

the CTAElement class are grouped in container classes within the 

CTAEngine and CTAModule classes. These container classes provide a 

convenient way for the user interface to display a given component's 

geometric properties without having to know a priori what they are. 

2. Other Classes 

The CTAEngine, CTAModule, and CTAElement classes provide the 

central building blocks of the DSTAR model but only comprise a few of the 

many classes in the code. Additionally there are classes which control the 

user interface, commercial classes purchased to enhance the program, and 

classes designed to provide additional mathematical ability (e.g. MV++). 

Figure 4.3 gives a summary of classes in the DSTAR object model. 

3. Class Organization 

While the core classes provide the framework upon which the DSTAR 

object model is built, it is the organization and interaction of these classes 

that provides the power and flexibility of the simulation. Again, the 

CTAEngine class lies at the heart of the simulation. There will only be one 

object of this class in any given model. It is, in a sense, the glue that holds 
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Thermoacoustic Classes: CMyEdit 
CTAEngine CMyPropertySheet 
CTAElement COptionsDialog 
CTAModule CuserDefinedVariablePage 
CTubes 
CHeatExchangers Utility Classes: 
CStacks CToken 
CInitState CUnitConvertor 
CLumpedElements CUserDefinedVariables 

User Interface Classes: Mathematical Classes: 
CAboutDlg MV++ Classes: 
CAssemblePage mvblas 
CComponentPage mvmtp 
CEngConfigGrid mwind 
CFormDialogApp mwrf 
CFormDialogDoc mwtp 
CFormDialogView 
CGlobalPage Commercial Software Classes: 
CGraphDialog Ultimate Grid Classes 
CGTSummary Pro Essentials Classes 
CMainFrame 

Figure 4.3. The classes of the DSTAR object model. 

the model together. Within the CTAEngine object there are two data 

structures that comprise the totality of any given device geometry. The first 

structure is a collection of CTAElement objects that comprise the properties 

of the engine as a whole. This array is housed in a Microsoft Foundation 

Classes (MFC) container class called CObArray. The second structure is an 

ordered array of CTAModule objects that represents the particular 

thermoacoustic components of the given device. This array is also contained 

in a CObArray. The key advantage of this approach lies in the ease with 

which a given geometry can be altered by merely changing the makeup of 
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this array. New components can be inserted, moved and deleted with relative 

ease. In the past, changing a given simulation to reflect device geometry 

change would have required a rewrite of the code. 

Within the CTAModule class objects there are three data structures 

which effectively describe the geometry and current physical state of the 

given component. The CObArrays entitled m_GeometryElements, 

m_InputStateElements, and m_DerivedElements contain all this data as 

arrays of CTAElement objects. As its name suggests, m_GeometryElements 

contains all the variables that describe the thermoacoustic component's 

geometry. The current states of the temperature, complex pressure, and 

complex volume velocity are stored in m_InputStateElements. The final 

array, m_DerivedElements, contains values derived from the local state 

elements such as acoustic impedance. 

Figure 4.4 shows a Hofler Tube and the DSTAR class structure used to 

represent it. 

C.       COMPUTING AN INITIAL VALUE PROBLEM SOLUTION 

Solving the system of first order differential equations in a continuous 

manner from one end of the thermoacoustic engine to the other is the central 

computational task of DSTAR. For each component, a steady state solution 

to the one-dimensional wave equation, described in Chapter II, must be 

calculated. These component solutions are pieced together to make a 

continuous solution for the entire device. The CTAEngine class method 

entitled solve () accomplishes this task. 

The mechanism of the solve () method is made possible through the 

use of the virtual polymorphic function propagate () in each CTAModule 

derived class object. The solution is computed by iterating through the array 

32 



CTAEngine 

m TAModules 

t   D, 

•D ~° 
Q. 
E 
3 

Ü 

n>   CO 

E~ 
- m 
n 
<D _ 
Q.= 
E 
a e 

m_GeometryElements mJnputStateElements m DerivedEfements 

radius kxPosition work 
temperature acoustic imp.(Re) 
pressure(Re) acoustic imp.(lm) 
pressure(lm) 
volume velocity(Re) 
volume velocity(lm) 

m_GeometryElements mJnputStateElements m DerivedElements 

m_GeometryBements 

radius 
plate separation 
plate thickness 

m_GeometryElements mJnputStateElements m_Derived Elements 

radius kxPosition work 
temperature acoustic imp.(Re) 
pressure(Re) acoustic imp.(lm) 
pressure(lm) 
volume velocity(Re) 
volume velocity(lm) 

mJSeometryElements mJnputStateElements m_DerivedElements 

radius kxPosition work 
plate separation temperature acoustic imp.(Re) 
plate thickness pressure(Re) 

pressure(lm) 
volume velocity(Re) 
volume velocity(lm) 

acoustic imp.(lm) 

radius 
plate separation 
plate thickness 
enthalpy flow . 
rho 
Ksl, Csl, BetaK, BetaC 

kxPosition 
temperature 
pressure(Re) 
pressure(lm) 
volume velocity(Re) 
volume velocity(lm) 

work 
acoustic imp.(Re) 
acoustic imp.(lm) 
heat flow 

mJnputStateElements mJDerived Elements 

kxPosition work 
temperature acoustic imp.(Re) 
pressure(Re) acoustic imp.(lm) 
pressure(lm) 
volume velocity(Re) 
volume velocity(lm) 

m_GeometryElements mJnputStateElements m_DerivedElements 

radius kxPosition work 
temperature acoustic imp.(Re) 
pressure(Re) acoustic imp.(lm) 
pressure(lm) 
volume velocity(Re) 
volume velocity(lm) 

mJ3eometryElements mJnputStateElements m_Derived Elements 

radius kxPosition work 
temperature acoustic imp.(Re) 
pressure(Re) acoustic imp.(lm) 
pressure(lm) 
volume velocity(Re) 
volume velocity(lm) 

Figure 4.4. The Hofler Tube and the classes used to model it. 
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of CTAModule class derived objects and calling the propagate () function for 

each object. The values of the local state variables (temperature, complex 

pressure, and complex volume velocity) are passed in as initial conditions to 

the function. During the integration through the particular component, the 

intermediate values for the local state variables are recorded for later use. 

After the integration of a component is complete, the final local state 

quantities are retrieved and then passed on to the next component as its 

initial conditions. Since each propagate () function is unique to the type of 

component it models, the solution that results is that of a one-dimensional 

wave propagating from one end of the device to the other, in addition to 

temperature distribution and heat and enthalpy flow in the stack. Figure 4.5 

displays a block diagram example of the solve ()  function for a three tube 

device and the DSTAR plot that resulted. 

D.  COMPUTING A BOUNDARY VALUE PROBLEM SOLUTION 

Solving an initial value problem, although illustrative of the flexibility 

of the DSTAR code, is only the first step in calculating the wave equations for 

a given device. To find a true physical solution, boundary conditions must be 

applied. To accomplish this task, the Newton-Rhaphson method coupled with 

the LU decomposition are used. 

Recalling the Newton-Rhaphson method described in chapter 3, the 

initial step of the algorithm required the generation of a vector of guessed 

initial conditions, x, as in equation (3.11). The CTAEngine class method 

constructvectors () realizes this process. This method iterates through 

the array of component objects and searches for variables that have been 

tagged by the user as guesses. When such a variable is encountered, a 
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Figure 4.5. The bottom of the figure shows a block diagram of the solve() 
function in operation. After an initial condition is inserted, each component's 
propagateO function is called and the acoustic wave is transmitted from one 
end of the device to the other. For this example case there are three tube 
sections of different radii. This plot, exported from DSTAR, shows the effect 
of the increasing radius on the local state quantities, pressure (Re) and 
volume velocity (Im). See Appendix B for normalized variables and 
parameters. 
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pointer to that variable is appended to the guess vector. Additionally, the 

method collects pointers to all output variables that are tagged as targets as 

well as pointers to the actual target values. The difference of the target 

values and the corresponding calculated solution value is the function vector, 

F, as in equation (3.11). 

To complete the solution, the mnewt () method is called. This method 

uses the previously described solve () method to compute the first solution. 

If the function vector, F, is sufficiently small in magnitude, then the 

boundary value problem is complete. More likely, at least one iteration of the 

Newton-Rhaphson algorithm will be required. In this case, the Jacobian 

matrix is calculated using finite difference partial derivatives. With J and F 

calculated, the LU decomposition and backward substitution are performed to 

solve (3.11) for the guess vector change, 8x. These changes are applied to the 

guesses and the process repeats until the solution converges or the process 

fails. Figure 4.6 shows a flow chart representation of this procedure. Figure 

4.7 details an example of a computed boundary value problem from DSTAE. 

36 



yes 

CTAEngine::constructVectors() 

' 

CTAEngine::mnewt() 

i ' 

CTAEngine::solve() 

1 

<L   lFl- tolf   ^> 
solution 

complete 

yes 

no 

calculate finite difference 
Jacobian 

i r 

CTAEngine::luDecomp() 
CTAEngine::luSolve() 

J <5x = -F 

<CL N - fo/x       J^>- solution 
complete 

yes 

i 

no 
r 

„-^max numt 
^~"\^   exce 

ser of tries~-> solution failed 

i 

no 
r 

x = x + <5x 

Figure 4.6. The flow chart shows the mechanism for calculating boundary 
value problems. The values tolf, and tolx are user specified tolerances for 
exiting the Newton-Rhaphson routine. 
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Figure 4.7. A simple model of an early thermoacoustic demonstration 
refrigerator shows the application of the boundary value problem solver in 
DSTAR. The initial temperature, a pressure anti-node, and volume velocity 
node were specified at the left end of the device. The enthalpy flow of the 
stack was guessed at -0.01 (ND) while the target boundary condition was a 
final temperature in the stack of .85 dimensionless temperature units (-20 C). 
After completion of the calculation, the required enthalpy flow to achieve this 
temperature span was -0.038 (ND). See Appendix B for normalized variables 
and parameters. 
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V.     DSTAR GRAPHICAL USER INTERFACE 

The DSTAR graphical user interface (GUI) works hand-in-hand with 

the core thermoacoustic classes to dynamically create a model of a given 

scalable design or experimental device. The GUI was constructed using the 

Microsoft Foundation Classes and the document/view paradigm. The 

resulting interface and application code provide a mechanism for 

manipulating the thermoacoustic classes previously described. This includes 

basic construction of a thermoacoustic model as well as disk storage and 

retrieval. To fully describe the code required to create the user interface is 

well beyond the scope of this paper. As such, the details of the GUI will be 

presented so that the reader may become familiar with their use rather than 

the underlying code. 

A.       MAIN PROGRAM WINDOW 

Figure 5.1 shows the DSTAR main window. At the top of the screen is 

the menu bar which houses the program's four menus.   The toolbar contains 

the icon shortcuts for some of the menu commands as well as the icons to 

initiate a computation. The bulk of the window is used by a multi-function 

tabbed view. Selecting one of the five tabs changes the tabbed portion of the 

screen revealing different aspects of program functionality. Lastly, the status 

bar at the bottom of the screen relays information about computational 

processes as well as some basic program help. 
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Figure 5.1.    The figure shows the details of the DSTAR main program 
window.   In this screen shot, the Assemble Components tab is selected. 
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1.       Menu Commands 

The File menu, as shown in Figure 5.2, contains all the program 

functions related to saving and retrieving DSTAR model files. Saving a 

DSTAR file results in the entire model geometry, including the current values 

of all the variables, being permanently stored to disk. Likewise, retrieving a 

file will result in dearchival, allowing resumption of previous work. The 

DTSAR files, extension .tae, are an encoded binary format and are not 

readable by other programs or text editors. 

Edit   View   Help 

New Ctrt+N 

Open... QrW3 
Save Ctrt+S 
Save As... 

I    Export Solution Data to File 

I SJmpleWLmpEUae 
2 HoflefTubeHorSmällldtae 
3 HotlerTubeHotötae 
4 test tae 

Options.. 

Etft 

► Basic disk storage and retrieval functions 

Export calculation data to disk as a text file 

► Most recently used .tae files 

Open the numerical methods options dialog box 

Quit the DSTAR program 

Figure 5.2. The File Menu and its functions. 

The File menu also contains two other important features. The first is 

the Export Solution Data to File function. Once a calculation has been 

completed, the user can export all the data points that were collected during 

the integration to a text file on disk. Importing this file into a spreadsheet 

program will enable further manipulation of the data or creation of custom 

charts if desired. The last menu item, Options..., displays the numerical 

integration options dialog box. This window, displayed in Figure 5.3, 
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contains all the user selectable numerical tolerances for integration and 

boundary value problem computation. 

Options 

8 VP Options 
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Figure 5.3. The numerical options dialog box. 

The View menu allows the user to hide or display the toolbar, status 

bar, and output window. 

The Edit and Help menus are not implemented in this version of 

DSTAE.   However, they are included in the interface in anticipation of future 

capabilities. 

2.       The Toolbar 

The toolbar contains menu shortcut icons as well as two buttons which 

initiate DSTAR calculations. The toolbar is normally located as shown in 
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Figure 5.1, however it may be dragged to other places in the main window as 

well as to the desktop. Figure 5.4 shows the toolbar buttons and their 

function. 

Create New Model 

Open Previously Saved Model 

Save Current Model 

Jj jälSlid" 

Help 
(Not Implemented in 

Vers. 0.9) 

Display Output Window 

Iterate Boundary Value 
Problem Solution 

^Compute Initial Value 
Problem Solution 

3. 

Figure 5.4. The DSTAR toolbar and icon functions. 

The Multi-Function Tabbed View 

The multi-function tabbed view provides the bulk of the user interface 

features of DSTAR while using a minimal amount of screen space. DSTAR 

can easily be used on a computer with an 800x600 display. There are five 

tabs in this view, each holding different interface features. The Assemble 

Components tab, which is the default, allows the user to construct the 

building block model of a thermoacoustic device being simulated. The Global 

Properties tab contains all the required information common to the entire 

model. After completion of the basic model and global properties, the user 

may select the Component Properties tab to enter the detailed description of 

each component. The User Defined Variables tab allows the user to construct 

specialized variables as functions of the standard DSTAR variables. Finally, 

the Guess/Target Summary tab is a compilation of all the variables in the 

model which have been selected as guessed initial conditions or targeted 

boundary conditions. 
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a)      Assemble Components 

The Assemble Components tab provides the GUI components 

required to build the black-box model of a thermoacoustic device. This tab is 

subdivided into three sections as shown in Figure 5.5. These three sections 

allow the selection of the initial, intermediate, and terminal thermoacoustic 

components of a DSTAR linear model. In general, integration begins with 

the initial component, passes through the intermediate components in the 

depicted order, and then ends at the terminal component. 

r/ Assemble Components 

I n&al Component      -    - 

1 End Cap 

iStraiahtTube 
Constant Taper Tube 
Radius Taper Tube 
Stack 
Heat Exchanger 

Add-~> 

Straight Tube 
Heat Exchanger 

Heat Exchanger 
Straight Tube Delete 

Move Up 

Move Down 

Select an IrtermediateTheimoacoustic Engine 
Component from the above Est and then uoe the Add 
button to include it in the current configuration 

Terminal Component ! 

Edit Component Name: 

IS tack 

Choose the Termsial Thermoacouctic Component    Radiation Impedance 

Figure 5.5. The Assemble Components tab allows the core components to be 
assembled in the proper order. 
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The Initial Component subsection provides a drop-list that allows 

the user to select one of several predefined initial thermoacoustic 

components. The Initial State component, unique to this subsection, has no 

physical geometry, but is rather an insertion mechanism for a known set of 

local state variables. The other six options, as shown in Figure 5.6, are all 

thermoacoustic lumped elements that require no integration and are coded 

with analytic solutions. 

Choose the initial Thetmoacousöc Component: 

Straight Tube 
Constant Taper Tube 
Radius Taper Tube 
Stack 
Heat Exchanger 

Ad 

End Cap 
Rigid Termination 
Small Volume 
Capillary 
Small Volume and Capillary 
Rigid Termination and Capillary 

n~i 

Figure 5.6.  The Initial Component drop-list displays the options for the first 
component in the DSTAE model. 

The Intermediate Components subsection provides for assembly 

of the major components of a device. The left-hand list-box shows an 

inventory of the thermoacoustic components that have been coded into 

DSTAE. The right-hand list-box details the configuration of the device 

currently being modeled. Buttons labeled Add, Delete, Move Up, and Move 

Down are used to manipulate the components into the proper configuration. 

Once a component has been added to the model, its name should be changed 

both to allow easier identification, as well as proper functioning of the user 

defined variables mechanism which requires unique names. User defined 

variables will be described in more detail later in this chapter. 

The Terminal Component subsection works identically to the 

Initial Component subsection. As shown in Figure 5.7, the choices for the 
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terminal thermoacoustic component are the same with the exception of the 

addition of a Radiation Impedance lumped element and no Initial State option. 

- Terminal Component       

Chooce the Terminal Thermoacoustic Component    None 

End Cap 
Rigid Termination 
Small Volume 
Capillary 
Small Volume and Capillary 
Rigid Termination and Capillary 
ladiation ImDedance 

Figure 5.7. The Terminal Component drop-list. 

b)        Global Properties 

The Global Properties tab, shown in Figure 5.8, contains a small 

spreadsheet-like interface for the input, and modification of the global engine 

properties. The three columns at the far right are used to designate a given 

variable as a guess, target, or optimized quantity. Note that optimized 

quantities are not implemented in DSTAE version 1.0. Quantities that are 

colored gray as well as checkboxes that have a gray background are not user 

editable. The units column depicts the appropriate dimensions that a given 

quantity should be entered in. In general, the global properties should be 

entered prior to editing any individual component properties since 

dimensional conversions may rely on the frequency, sound speed, and 

nominal radius. The two buttons on the bottom of the screen may be used to 

export or import the global variables to disk. 
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c)       Component Properties 

The details of the physical description for each thermoacoustic 

component are entered on the Component Properties tab. Again, a 

spreadsheet-like interface is used to ease the process of entering all the 

relevant data. As with the Global Properties tab, all quantities which are 

grayed out are not user editable. In general, these quantities are calculated 

by DSTAR and will be filled in by the program after a calculation is 

completed. Figure 5.9 shows an example of the parameters for a 

thermoacoustic stack. 

@ Global Properties 

Poperty Value Units 

!Hz 

;ND 

G    T    O 

• DDD 
- DDD 
-DDD 
- DDD 
-DDD 
vDDD 
'IDDD 
-DDD 
- DDD 
- DDD 

frequency 

I gamma 

350.000000 

M.667000 

1 prandtl j 0.668000 ;ND 

Jrbeta I 0.650000 jND 

* radiusl ; 5.000000 I cm 

'   ' sSpeedl 102400.000000 Icrnfe 

$  -po^pm j 0.100000 jND 

pip171 |15520000.000000 I dyn/cm 

Tml | 300.000000 | Kelvin 

Kgasl : 15550.000000 \ erg/sec*deg*cm 

- Global Variable Fie - 

import from file j Export brie   |  Igtobals.gvf 

Figure 5.8. The Global Properties tab contains all the data which pertains to 
the thermoacoustic device as a whole. 
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The units column on this page allows numerical entries to be 

entered in any one of several dimensional choices. Most variables default to a 

non-dimensional unit for entry. If desired, the user may select a different 

unit to enter a given value. Units such as mks, cgs, english, and non- 

dimensional can be mixed at will. Once an entry has been made, selection of 

$ Component Properties 

End Cap-I 

Short Straight Tube 

Stack    0 
Long Straight Tube 

  Units 

Temperature \ 0.000000 1Tm! 

Pressure (Re) i 0 000000 so 

Pressure (Im) i 0.000000 j so 

Volume Velocity (Re) : O.OOOOüO ; •.po&in)^ ATI&AS 

Volume Velocity (Im) \ 0 000000 I 'aso/fcrrOai ATl/g-sn 

Length ; 0.100000     Äi M (lambda bar) 

Stack Radius : 1.000000 y/radiusl 

Plate Separation ; 4.000000 ■ deltak! 

Plate Thickness ; 0.100000 ■       | plate separations 

Enthalpy \ -0.010000        ; ND  

Ksi | 36000 .Ö00ÖÖÖ ! erg/gram'degree 

Cs;l : 118000000.000; erg^'degree 

rhos 10.000000       Igfcm'S 

betaKs 0.300000 ND 

betaCs 0.900000 HD 

Acoustic Imp. (Mag) j 0.000000 j pmsg.smms'8l -All 

Acoustic Imp. (phase) [ 0 000000 | oisgr^efe 

Work Row 10.00Q0G0 I ND 

G    T    O! 

DD 
DD 
DD 
DD 
DD 
Di 
DD 
DLTI 
DiJ 

JBö| 
DD 
DD 
DDi 
JDdl 
:DO: 
DD 
DD 
:DD 

1 
B 
i: I 
1 
1 
■ 
D 
Ö 
O 
D 

M 
D 
D 

Figure 5.9. The Component Properties tab contains the bulk of the device 
geometry information required by the model. To edit a component's 
parameters, select the desired component from the current configuration (1). 
To enter a value, click on the appropriate column and enter a number (2). To 
change the displayed units, click the down arrow in the units column and 
select the desired dimensions (3). Note that all quantities which appear gray 
are not user editable and, in general, are calculated by the code. 
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a different unit will result in conversion of the previous value to the new 

units. For example, to find the dimensioned length of a given component 

previously specified in dimensionless units, simply select the desired units 

and a conversion will instantly be performed. As previously stated, these 

conversions require that the global properties have already been correctly 

specified. 

The use of the units column has an additional feature in 

DSTAR. If a quantity with dimensions of length is specified in dimensionless 

form, that quantity will automatically scale as the frequency, initial sound 

speed, or nominal radius changes. Conversely, if a length is specified in 

dimensioned units, it will remain fixed at that value regardless of changes in 

frequency or sound speed. 

Creating a scaled model of a laboratory device is now fairly 

simple. First enter all the component parameters as dimensioned quantities. 

After the each value has been entered, change its units to the dimensionless 

form. Now the frequency of oscillations can be adjusted and the size of the 

device changed. Then the steady-state solution is found again. The scaled 

dimensioned quantities can then be retrieved from the model by reselecting 

the desired units. 

d)       User Defined Variables 

The fourth tab in the DSTAR main window is the User Defined 

Variables tab. The local state quantities of temperature, complex pressure, 

and complex volume velocity fully describe the thermoacoustic waves that 

resonate in a given device. These values are the core quantities that are 

integrated to provide a solution to the various wave equations. Other 

quantities such as work-flow, heat-flow and acoustic impedance are then 
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calculated from these local state quantities. However, it is often necessary to 

define new, device specific quantities in order to gain more informative 

output from the model. The coefficient of performance (COP), which is a 

device specific figure of refrigeration merit, provides a good example of such a 

quantity. To create this kind of output, the User Defined Variables tab uses a 

Reverse Polish Notation (RPN) syntax as described in Figure 5.10. 

e)       Guess/Target Summary 

The final tab in the multi-function view is the Guess/Target 

Summary tab. As its name suggests, this tab displays the list of all the 

variables that have been selected as guesses or targets as described in 

Chapters 3 and 4. In order to compute a boundary value problem, the 

number of guesses must equal the number of targets and this display 

provides a convenient way to check. Figure 5.11 displays this tab. 

B.       THE OUTPUT WINDOW 

In addition to the main program window, DSTAR has a secondary 

output window. This window, which is displayed following a successful 

calculation, provides the graphical and textual output data from the model. 

As shown in Figure 5.12, one half of the output window has a continuous, 

end-to-end plot of the local state variables from the last calculation. To zoom 

in on a particular portion of the plot, the mouse may be used to drag a zoom 

box over the desired region of interest. Right-clicking the mouse in the plot 

region and selecting the Maximize option will enlarge the plot for easier 

viewing. Additional options such as printing, exporting, and customization 

may also be found by right clicking the plot. 
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£f Ucer Defined Variables 

U?er Defined Variables RPN Loge: 

Straight Tübe Wei fMaal 

© New I Delete   Stacht Tube Wei (Mag) 

Avafebte Component Variables: 

End Cap-l:Work 
End Cap-l:Acoustic Imp. (Mag) 
End Cap-l:Acoustic Imp. (phase) 
Straight Tube:Start Position 
Straight Tube:Temperature 
Straight Tube:Pressure (Re) 
Straight Tube:Pressure (Im) 
Straight Tube:Volume Velocity (Rel 
iStraiqht Tube:Volume velocity llrnl 
Straight Tube:Length 
Straight Tube:Tube Radius 
Straight Tube:N/A 
Straight Tube:N/A 
Straight Tube:N/A 
Straight Tube:Work 
Straight Tube:Acoustic Imp. (Mag) 

Straight Tube:Volume Velocity (Re) 
2 
y x 
Straight Tube:Volume Velocity (Im) 
2 
y"x 
+ 
0.5 

o + i • 

Delete Lme \i \fx © 

Figure 5.10. The User Defined Variables tab is used to create device specific 
variables as functions of the DSTAR local state, and geometry variables. To 
create a new variable, click the New button (1), and then change the default 
name (2). Here, the magnitude of the complex volume velocity has been 
created. After selecting a variable name from the model's complete list (3), 
the Add Component Variable button is pressed (4) inserting the variable's 
name into the RPN Logic list-box. To add a constant, enter the value in the 
edit box (5) and press the Add Constant button. Finally, an operator is added 
to the logic using the appropriate button (6). The expressions are evaluated 
from top to bottom using EPN syntax. Note that the user-defined variables 
use a name matching mechanism. As such, all components in the model 
should have unique names. 
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Guee^T arger Summary 

Property Unib 
Stack Length Guess 0.1 
Straight Tube Length Guess 1.37 
Radiation Impedance-T Volume Velocity (Re) Target 0 
Radiation Impedance-T Volume Velocity (Im) Target 0 

kl*x 
kl-x 
(1 /gammajfpo/pml) al ATI 
(1 /gammajipo/pml) al ATI 

Figure 5.11. The Guess/Target Summary tab. 

Below the plot, there is a region for typing notes about the current 

model. All text in the Model Notes window will be saved with the .tae file 

when it is archived to disk. 

The right half of the output window displays a text dump provided by 

DSTAE following a calculation. All the model's data including geometry, 

local state, as well as the guesses both before and after a calculation, are 

included in this list. The textual output may be saved to disk at any time by 

using the Save Text button at bottom of the screen. It should be noted that 

this listing will contain the history of all calculations performed during the 

current DSTAR session. To clear the window of its content, simply press the 
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Clear Text button. Note the text contents of this list are not saved to disk 

when the model itself is archived using the File menu. 
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Figure 5.12. The DSTAE output window. 
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VI.    DSTAR PRACTICAL EXAMPLE: AN ENHANCED 
HOFLER TUBE 

To provide the reader with a practical example of the DSTAE code, a 

previously built thermoacoustic device was modeled and then modified for 

increased efficiency. Again, the Hofler Tube provides a straightforward and 

convenient example. 

As previously shown in Figure 4.1, the Hofler Tube is a thermoacoustic 

prime mover that uses the supplied thermal gradient to produce acoustic 

power. In this case, the open end of the tube is immersed in liquid nitrogen 

for several minutes bringing its temperature to -190° C. When removed from 

the fluid, heat from the user's hand will flow from the warm end of the device, 

through the stack, to the newly created heat sink at the open end. The result 

is the spontaneous generation loud acoustic oscillations. This device has 

proved useful as ä teaching aid and lecture demonstration. 

Figure 6.1 details the DSTAR input parameters used to model the 

basic Hofler Tube. Although the design of the Hofler Tube is simple and 

relatively easy to construct, its efficiency suffers. Figure 6.2 shows a plot of 

the output acoustic state variables (steady state) within the Hofler Tube as 

well as the calculated efficiency retrieved from the DSTAR model.   The 

efficiency of the Hofler Tube, as defined in Figure 2.1 where W is the radiated 

sound power, is quite poor at only 0.16%. (Note: the DSTAR model solved is 

very similar to the actual Hofler Tube except that the ambient-to-cold 

temperature span is replace with a hot-to-ambient temperature span of 

comparable ratio. This avoids the modeling ambiguities of a discontinuous 

temperature at the open end of the tube, in addition to modeling a genuine 

high temperature heat source, which is of interest for more practical engine 

designs.) 
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Global Properties: 

frequency = 250 Hz 
gamma = 1.4 ND 
prandtl = 0.715 ND 
rbeta = 0.75 ND 
radiusl = 1.905 cm 
sSpeedl = 34700 cm/s 
po/pm =0.1  ND 
pm = 1.03e+006  dyn/cm 
Tml = 300 Kelvin 
KgasI = 2510 erg/sec*deg*cm 

Component Parameters: 

End Cap-I: 
Length = 0 N/A 

Hot End Straight Tube: 
Length =0.63 l/kl (lambda bar) 
Tube Radius = 1 y/radiusl 

Hot Heat Exchanger: 
Length =0.02 l/kl (lambda bar) 
HX Radius = 1 y/radiusl ■ 
Plate Separation =4.65 deltakl 
Plate Thickness = 0.5 plate separations 

Stack: 
Length = 0.085 l/kl (lambda bar) 
Stack Radius = 1 y/radiusl 
Plate Separation = 4 deltakl 
Plate Thickness = 0.1 plate separations 
Enthalpy Flow = 1.12.3 ND 
Ksl = 1.344e+006 erg/gram*degree 
Csl = 5.02e+006 erg/g*degree 
rhos =8.03  g/cm~3 
betaKs =0.42  ND 
betaCs =0.5  ND 

Cold Heat Exchanger: 
Length =0.02 l/kl (lambda bar) 
HX Radius = 1 y/radiusl 
Plate Separation =4.65 deltakl 
Plate Thickness =,0.5 plate separations 

Cold End Straight Tube: 
Length = 0.8227 l/kl (lambda bar) 
Tube Radius = 1 y/radiusl 

Radiation Impedance-T: 
Length = 0 N/A 
Radius = 1.905 cm 

Figure 6.1.   The components and properties used to model the basic Hofler 
Tube using DSTAE. 
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ORIGINAL HOFLER TUBE 
Acu- 

pressure (Re) 

Volume Velocity (Im) 

Pressure (Im) 
X——i 

Temperature 

Volume Velocity (Re) 
+ —i« 
Radius 

0.00 0.25 0.50 0.75 1.00 
kx Position (radians) 

Hot heat exchanger^ 

1.25 1.50 

Tube provides heat reservoir' 
created by user's hand 

Tube provides heat sink 
created by immersion in liquid 

N2 

Stack • Cold heat exchanger 

Efficiency = 0.16% 

Figure 6.2. The DSTAR model plot of the steady state oscillations in the 
original Hofler Tube. The simple design yields very low efficiency . See 
Appendix B for normalized variables and parameters. 
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The original Hofler Tube was not designed with efficiency in mind. 

Rather, it was designed to operate with a temperature span that is as small 

as possible.   This constraint contributes to the tube's inefficiency by limiting 

the design options available for the stack and other components. As a result, 

the stack position, stack length, and stack plate spacing were never optimized 

for efficiency but rather just to achieve onset of the spontaneous oscillations. 

An additional source of inefficiency in the Hofler tube is the reflection 

of acoustic energy back into the tube at its open end. Since the room into 

which the sound is propagating is of relatively low acoustic impedance with 

respect to the inside of the tube, much of the wave energy which reaches the 

interface is reflected back into the tube. The result is a further decline in the 

overall ability to project acoustic power into the outside environment (i.e. 

efficiency). 

Given our current knowledge of thermoacoustics and the DSTAR code 

we can design a more efficient demonstration device. Rather than using 

liquid nitrogen to create the temperature span, we will use an ordinary gas 

(e.g. butane or propane) heat source. This will free some of the constraints 

imposed by the use of the liquid nitrogen and allow a more thorough 

optimization of the tube's other components. As such, the modified Hofler 

tube's stack position, length, and plate spacing have been altered for better 

overall performance. A final optimization done to the Hofler tube is the 

addition of a horn element to the tube mouth. This gradual flare in tube 

diameter helps to reduce some of the acoustic reflections back into the tube, 

thereby transmitting more power to the room. The DSTAR tube component 

handles the varying cross section of the horn tube, plus a radiation 

component has been added to DSTAR to model the complex radiation 

impedance coupling power out of the mouth of the horn. 
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As a result of all the modifications, the efficiency of the Holfer Tube 

was increased to 2.25% while maintaining a relatively low temperature ratio 

from hot to ambient of 1.75. This improved efficiency is a two order of 

magnitude increase in the efficiency of the device. The DSTAE model 

parameters for the modified Hofler Tube are shown in Figure 6.3. Figure 6.4 

shows the resultant plot of the state variables as well as a depiction of the 

new design. 
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Global Properties: 

frequency = 900 Hz 
gamma = 1.4 ND 
prandtl = 0.715 ND 
rbeta = 0.75 ND 
radiusl = 0.7 cm 
sSpeedl = 34400 cm/s 
po/pm =0.1  ND 
pm = 1.03e+006  dyn/cm 
Tml = 296 Kelvin 
KgasI = 2510 erg/sec*deg*cm 

Component Parameters: 

End Cap-I: 
Length = 0 N/A 

Hot End Straight Tube: 
Length =0.25 l/kl (lambda bar) 
Tube Radius = 1 y/radiusl 

Hot Heat Exchanger: 
Length = 0.03 l/kl (lambda bar) 
HX Radius = 1 y/radiusl 
Plate Separation =5.0 deltakl 
Plate Thickness = 0.6 plate separations 

Stack: 

Horn: 
Length =1.83 l/kl (lambda bar) 
Initial Radius =1.0 y/radiusl 
Final Radius =3.0 y/radiusl 
Small Radius Angle = 0 degrees 
Large Radius Angle =14.3 degrees 

Radiation Impedance-T: 
Length = 0 N/A 
Radius = 2.1 cm 

Length =0.16 l/kl (lambda bar) 
Stack Radius = 1 y/radiusl 
Plate Separation =3.75 deltakl 
Plate Thickness=0.083 plate separations 
Enthalpy Flow = 0.454141 ND 
Ksl = 1.344e+006 erg/gram*degree 
Csl = 5.02e+006 erg/g*degree 
rhos =8.03  g/cm~3 
betaKs = 0.42  ND 
betaCs = 0.5  ND 

Ambient Heat Exchanger: 
Length = 0.03 l/kl (lambda bar) 
HX Radius = 1 y/radiusl 
Plate Separation = 5 deltakl 
Plate Thickness = 0.6 plate separations 

Figure 6.3. The components and properties used to model the modified Hofler 
Tube using DSTAE. 
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Modified Heat Driven Hofler Tube 

Pressure (Re) 

Volume Velocity (Im)  

Pressure (Im) 

Temperature 

Volume Velocity (Re) 
+ —■■■ 
Radius 

0.00       0.25       0.50       0.75       1.00       1.25       1.50       1.75       2.00       2.25 
kx Position (radians) 

Hot heat exchanger 

Heat flfl§ 

Stack 
\ Ambient heat exchanger 

Efficiency = 2.25% 

Horn 

Figure 6.4. The DSTAR model plot of a modified heat driven Hofler Tube. 
For this design, the driving temperature gradient is created by addition of 
heat to the left end of the device using a suitable source such as a gas flame. 
Two separate tapers are used to decrease losses within the device. These 
modest changes result in an increase in efficiency of about two orders of 
magnitude. See Appendix B for normalized variables and parameters. 
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VII. CONCLUSION 

This thesis has attempted to develop a new expert system code for the 

simulation and design of thermoacoustic devices. The assembled code 

provides a unique approach to modeling these devices using the object- 

oriented C++ language.   It includes a Windows™ compliant graphical user 

interface as well as data storage and retrieval capabilities. As a result, the 

simulation is very flexible yet easy to use. Considerable effort was given to 

preserving the flexibility and breadth of the possible simulations, in addition 

to allowing easy modification of the source code for new thermoacoustic 

components. To demonstrate the utility of the code, a thermoacoustic prime 

mover was modeled and then optimized for better performance. The resulting 

model yielded an efficiency increase of nearly two orders of magnitude. 

Totaling over 39,000 lines of code on approximately 900 pages, the 

DSTAE C++ code is too lengthy to be included in this thesis. The final code is 

approximately 1/3 commercial software add-ins (plotting capabilities and grid 

component), 1/3 graphical user interface and 1/3 thermoacoustics and 

numerics. 

The DSTAE model, as it stands now, provides a complete set of 

components to design and simulate basic thermoacoustic devices. It is 

expected, however, that more components will be added as the program 

reaches maturity. Furthermore, DSTAE was designed with optimization 

routines in mind. Inclusion of an optimizer in future versions will greatly 

enhance the program's already capable performance and would provide an 

invaluable tool to aid the experimental physicist. 

Those interested in obtaining the latest copy of the program should 

contact Professor Tom Hofler at the address listed in the distribution list at 

the end of this document. 
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APPENDIX A: EXTENDING DSTAR 

A.      ADDING PROGRAM FUNCTIONALITY 

One of the great advantages to the DSTAR object oriented code is the 

ease with which it can be extended to add greater functionality. The most 

basic upgrade is the addition of new thermoacoustic component models to the 

code. Once added, the new components will integrate seamlessly into the 

existing code and are immediately available to create simulations. It should 

be noted that this appendix is intended for those familiar with the C++ 

language and not the general reader. 

To create a new thermoacoustic component in DSTAR, it is necessary 

to write a new class that derives from the abstract base class CTAModule. As 

a derived class, the new thermoacoustic component class will inherit the 

functionality of the CTAModule class. The inherited methods, although not 

present in the new class's code, are always available to be called by the 

derived class. Figure A.1 shows the methods that all CTAModule derived 

classes will inherit. 

In addition to defining methods passed on to derived classes, the 

CTAModule class also contains several pure virtual functions. A pure virtual 

function is one for which the interface, or function prototype, is defined in the 

base class but no implementation of the function is provided. As such, all 

derived classes must implement the details of the function. These functions 

are denoted in the base class's code by the "=0" appended to the end of the 

function prototype. Other functions which have the virtual keyword but are 

not pure virtual will have some type of basic implementation in the base class 

but are ordinarily overridden in the derived classes. The virtual functions 

defined in the CTAModule class are shown in Figure A. 2. 
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The CTAModule class also defines some member variables and data 

structures that are required by the user interface. These variables and data 

structures are presented in Figure A. 3. 

void init()  - Initialize Runge-Kuttatableau 

void initializeStorageArrays(void) - Create arrays for data storage 

void finalizeStorageArrays(void) - Compact data storage arrays 

void initDerivedElements () - Allocate dynamic memory for Derived elements 

void initstateElements(void) - Allocate dynamic memory for Local State elements 

void cleanup (void)  - Delete all dynamically allocated memory 

void calculateDerivedElements(const MV_Vector<double>&  localState) 

- Calculate acoustic impedance, work and heat-flow as a function of a given set of local state 

variables 

void adaptiveRK45Solve(MV_Vector<double>&  localState,   double positionStep) 

- Integrate a component from end to end using the Runge-Kutta adaptive method 

void takeAdaptiveStep(MV_Vector<double>&  localState,   doubles  positionStep) 

- Calculate one step of a particular integration using adaptive stepsize to produce desired 

accuracy 

void adaptiveRK45(MV_Vector<double>S localState, doubles positionStep) 

- Performs single Runge-Kutta step calculation 

std::complex<double> CDiffTanh(std::complex<double> zl) 

- Computes complex tanh(z1) for the SPECIAL CASE of Re(z1) = Im(z1) 

void CBess(std::complex<double>  z,   std::complex<double>s  JO, 

std::complex<double>s Jl) 

- Complex Bessel functions 

std::complex<double> CJlOr(std::complex<double> z) 

- Compute the bessel func. ratio J1 (z)/J0(z) for z = (-x, x) where x is pos. & real, 

double work(const MV_Vector<double>S  localState) 

- Calculate the acoustic work-flow done as a function of a given set of local state variables 

Figure A. 1. The methods of the CTAModule class which are inherited by its 
daughter classes. Some of the more self-explanitory functions have been 
omitted for brevity. 
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Pure Virtual Functions: 

virtual MV_Vector<double> derivative(const MV_Vector<double>&  localState, 
double position)   = 0 

- Provides derivatives for the Runge-Kutta algorithm. MUST be implemented in all derived 

classes. If a class requires no integration, simply include an empty function that returns the 

passed-in argument. 

virtual void getModuleVariables(void)  = 0 - Fills the components member variables with 

copies of the user interface values. These variables are then used to do all calculations. 

MUST be implemented in all derived classes. 

Virtual Functions: 

virtual void propagate(MV_Vector<double>&  localState)   - Generic algorithm to 

compute the values of the local state variables from end to end using the Runge-Kutta 

integrator while storing data and performing other housekeeping tasks . This function is most 

often overridden in derived classes to provide unique functionality, 

virtual void Serialize (CArchives ar)  - Saves/retrieves components variables to disk. 

Should be overridden in derived classes. 

virtual void ensureConsistentObject(void)  - Called by user interface after a value has 

been entered. This is the programmers chance to scrutinize entries and ensure they are 

consistent with each other and with the model. Should be overridden in all derived classes 

Figure A.2. The virtual functions defined in the CTAModule class. 

CTAEngine* theEngine - Holds a pointer to the CTAEngine object at runtime 

CObArray m_InputStateElements,   m_GeometryElements,   m_DerivedElements 

- Arrays of CTAEIement objects used by GUI to hold model's variables 

CArray<double,double> positData,   tempData,   presRealData,   presImagData, 

welRealData,  welimagData,  radiusData - State vs. Position storage arrays 

bool  m_storingData — Flag to Store data 

bool m_stepsizeFixed - Flag to turn off adaptive stepsize 

CString m_name - String name of component 

double stepSize - Initial stepsize 

std: : complex<double> pres,  wel - Can be used for calculations if desired 

double kxPos,  temp - Can be used for calculations if desired 

MV_Vector<double> solnError 
MV_1Vector<double> a 
MV_ColMat<double> b 
MV_Vector<double> cl 
MV Vector<double> c2 

- Used by Runge-Kutta algorithm 

Figure A.3. Data structures and member variables of the CTAModule class. 
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B.       AN EXAMPLE THERMOACOUSTIC CLASS 

To create a new thermoacoustic class, there are two files that must be 

inserted into the DSTAR project file. The header file, entitled 

"CClassName.h", contains all the function prototypes as well as the member 

variable declarations. The following code is an example of a thermoacoustic 

class header file for the class CMyTAComponent. 

////////////////////////////////////////////////////////////////////// 
// // 
// CMyTAComponent.h: definition of the CMyTAComponent class.       // 

////////////////////////////////////////////////////////////////////// 

//This preprocessor directive is included to prevent multiple inclusions 
//of this header file 

#ifndef _MYTACOMPCLS_ 
»define _MYTACOMPCLS _ 

//Since this class derives from CTAModule it must have access to it's 
//interface 

»include "CTAModule.h" 

class CMyTAComponent : public CTAModule 
£ 

//To allow proper coordination between the CTAEngine class and this 
//class, the CTAEngine is declared a friend 

friend class CTAEngine; 

//Functions and variables accessible from outside the class 
public: 

DECLARE_SERIAL(CMyTAComponent)//This is a macro, not a function 

CMyTAComponent ();//Serialization requires this class to have an 
//empty constructor 

CMyTAComponent (int dummyArgument);//Single argument constructor 
//used by the user interface 

virtual -CMyTAComponent ();//Destructor 

virtual void Serialize(CArchives ar);//File I/O 

void propagate(MV_Vector<double>& locaistate);//Calc. the solution 
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MV_Vector<double> derivative(const MV_Vector<double>& localState, 
double position);//Return derivatives 

void getModuleVariables(void);//Get copies of GUI values 
void ensureConsistentObject(void),-//Check user inputs 

protected: 

double m_radius, m_area;//Member variables 
double calculateSomething(double radius),-//A utility function 
int m_type;//A sample variable used to distinguish variants of the 

//class 

private: 

}; 

#endif 

After the header file is created, an implementation file named 

"CClassName.cpp" must be created. This file contains all the code for the 

functions declared in the header file. The following is an example 

implementation file for the preceding header file. 

////////////////////////////////////////////////////////////////////// 
// // 
// CMyTAComponent.cpp: definition of the CMyTAComponent class.     // 
// // 
////////////////////////////////////////////////////////////////////// 

»include "CMyTAComponent.h"//Include the header for this class 

//Macro to implement serialization 
IMPLEMENT_SERIAL(CMyTAComponent, CObj ect, 1); 

CMyTAComponent::CMyTAComponent () 
{ 

//Empty constructor required by MFC serialization mechanism 
} 

//Single argument constructor used by the user interface to add 
//components to the model.  The single dummy argument is used to 
//distinguish this constructor from, the default empty constructor 
//but serves no real purpose in this class.  It may be used, however, 
//to create variations of the class. 
CMyTAComponent::CMyTAComponent (int dummyArgument) 
t 

init();//Initializes Runge-Kutta tableau 

initStateElements();//Adds local state variables and allocates 
//memory for them 
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initDerivedElements();//Adds derived element variables and 
//allocates memory for them 

m_name = "My New Component";//Set the name of the component 
m_type = dummyArgument; 

m_GeometryElements.Add( new CTAElement("Radius", 1.0, true, false, 
true, true, false) );//Add component specific geometry variables 

//using this syntax to the m_GeometryElements 
//array (Index 0 is occupied by the length) 
//Details about the CTAElement constructor call 
//can be found in the file CTAElement.cpp 

((CTAElement*)(m_GeometryElements[1]))->SetAvailableUnits( 
Y_LENGTH_UNITS);//Set the appropriate units for the variable 

//just created 
//Details about units are available in the 
//CTAElement.cpp file 

} 

CMyTAComponent::-CMyTAComponent () 
{ 

cleanup();//Call the base class function to destroy any allocated 
//memory 

} 

void CMyTAComponent::propagate(MV_Vector<double>& localState) 
{ 

//Put copies of GUI variables into local member variables 
//prior to any calculations 
getModuleVariables(); 

//Use any member functions specific to class to perform 
//additional calculations or to make alterations 
//to the passed in local state prior to integration. 
m_area = calculateSomething(m_radius); 
localState(TEMP) *= m_area; //Note this is a nonsense calculation 

//It is just used to illustrate a point 

//Prep storage arrays for data 
initializeStorageArrays(); 
//Reset flag 
done = false; 
//Guess an initial stepsize 
stepSize = 0.00001; 

//Integrate the component from end to end using the adaptive RK 
adaptiveRK45Solve(localState,  stepSize); 

//Now that the integration is complete, 
//place the last calculated localState into the GUI accessable 
//variables.  This allows for target value comparison and access 
//by the user. 
((CTAElement*)(m_InputStateElements[1]))-> 
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setValue( 
((CTAElement*) (m. 

setValue( 
((CTAElement*) (m 

setValue( 
((CTAElement*)(m_ 

setValue( 
((CTAElement*)(m. 

setValue( 

localState(TEMP)); 
_InputStateElements[2])) • 
localState(PRES_REAL)); 
_InputStateElements[3])) ■ 
localState(PRES_IMAG)); 
.InputStateElements[4])) ■ 
localState (WEL_REAL)) ; 
_InputStateElements[5])) ■ 
localState(WEL_IMAG)) ; 

//Compact storage arrays after all data points have been added 
finalizeStorageArrays(); 

//Calculate work, and acoustic impedance based on last values 
//of local state variables 
calculateDerivedElements(localState) ; 

return; 

} 

//Function returns" the derivative of each local state variable in 
//same position as the passed in variable 
MV_Vector<double> CMyTAComponent::derivative(const MV_Vector<double>& 

localState, double position) 
{ 

//Make an empty vector to hold the derivatives 
MV_Vector<double> deriv(localState.size(), 0.0); 

//These are nonsense derivatives but illustrate where the proper 
//derivative should be placed in the returned Mv_Vector 
deriv(l) = 0;//Temperture derivative 
deriv(2) = localState(WEL_REAL);//Pressure (Re) derivative 
deriv(3) = localState(WEL_IMAG)///Pressure (Im) derivative 
deriv(4) = 0;//Vvel (Re) derivative 
deriv(5) = 0;//Wel (im) derivative 

return deriv; 

//Function stores and retrieves the component data to/from disk 
void CMyTAComponent::Serialize(CArchive& ar) 
{ 

m_InputStateElements.Serialize(ar); 
m_GeometryElements.Serialize(ar) ; 
m_derivedElements.Serialize(ar) ; 

if (ar.IsStoring()){ 
ar « m_name 
« m_type;//Add additional member variables to be 

//stored in this way 
} 
else { 
ar » m_name  // Variables must appear in exact same order 
» m_type;//here as above 

} 
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} 

void CMyTAComponent::getModuleVariables(void) 
{ 

//Put a copy of the user interface value of "Radius" into the 
//local member variable copy 
m_radius = ((CTAElement*)(m_GeometryElements[l]))->getValue(); 

} 

//This function demonstrates the proper syntax for utility functions 
//which are defined in the class 
double CMyTAComponent::calculateSomething(double radius) 
{ 

return (PI*radius*radius); 
} 

void CMyTAComponent::ensureConsistentObject(void) 
{ 

getModuleVariables(); 
if (m_radius < 0.0){ 

//Reset the radius to a default value 
((CTAElement*)(m_GeometryElements[1]))->setValue(l.0); 

//In this example, if the radius is < 0 we throw an exception 
//which is caught by the user interface and displayed, 
throw((Cstring)"Radius must be greater than zero"); 

C.  ADDING THE NEW CLASS TO THE USER INTERFACE 

Now that the class has been defined, it is necessary to modify the user 

interface to reflect the presence of the new thermoacoustic component. To do 

this, changes must be made to the AssemblePage.h and AssemblePage.cpp 

files. 

First, the header for the new class must be included in the 

AssemblePage.h file. There is a list of #include's at the top. Append the new 

one as follows: 

#include "CTubes.h" 
»include "CStacks.h" 
»include "CHeatExchangers.h" 
»include "CLumpedElements.h" 
#include '"CMyTAComponent. h" 
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Second, the function CAssemblePage::OnSetActive(), in the 

AssemblePage.cpp file, must be modified to include the name of the new 

component: 

pListBox->AddString("Constant Taper Tube"); 
pListBox->AddString("Radius Taper Tube"); 
pListBox->AddString("Stack"); 
pListBox->AddString("Heat Exchanger"); 
pListBox->AddString("My New Component Name"); 

Lastly, the function CAssemblePage::OnAdd() must be modified to 

include the following line of code: 

case 3: 
pDoc->m_engine.m_TAModules.InsertAt(componentIndex+l, new 

CStacks(O)); 
break; 

case 4: 
pDoc->m_engine.m_TAModules.InsertAt(componentlndex+l, new 

CHeatExchangers(0)); 
break; 

//The number of the case statement must equal the index of the 
//component's name in the list box 
case 5: 

pDoc->m_engine.m_TAModules.InsertAt(componentIndex+1, new 
CMyTAComponent(0)); 

break; 

The project can now be recompiled and the program run. The new 

class is now an integral part of the program and will function identically to 

all the other thermoacoustic components. 
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APPENDIX B: SYMBOLS AND EQUATIONS 

LIST OF SYMBOLS 

A 
a 
COP 
CP 

area 
sound speed 
coefficient of performance 
isobaric heat capacity per unit mass 

y 
y0 

ß 
7 

H 
i 
I 

total energy flow 
the imaginary number 
initial or nominal ft. 

Im 
K 
l 
ND 

imaginary part 
thermal conductivity 
plate half-thickness 
non-dimensional 

K 

P,P 
Q 

pressure 
heat (subscript h or c indicates heat 
accepted or rejected from a hot/cold 

n 
p 
0 

Q 

reservoir) 
heat-flow 

0) 

Re 
T 

real part 
temperature (subscript h or c 
indicates temperature of a hot/cold 

1 
2 
h 

W 
reservoir) 
work 

c 
m 

W work-flow or acoustic power s 

position perpendicular to sound propagation 
plate half-gap 
thermal expansion coefficient 
ratio of isobaric to iscochoric specific heats 

thermal penetration depth 
viscous penetration depth 
plate heat capacity ratio 
thermal diffusivity 
wavelength 
dynamic viscosity 
kinematic viscosity 
perimeter 
density 
Prandtl number 
angular frequency 

1st order quantity (subscript) 
2nd order quantity (subscript) 
hot (subscript) 
cold (subscript) 
mean (subscript) 
solid (subscript - stack material 
properties) 

THERMOACOUSTIC EQUATIONS FOR IDEAL GASES 

NojarializatiojQJlQiis_taiLts 
N, P   =   Po = Pm(P</Pm) 
Nu = (1/yXR/pJAra! 

NT = T^ 
Nx = Vkj. 

rwl 

5. 
Nr = 
Ny = 
Nf  = 

'KI 

y0 

NPD= (l/2Y)(pyPin)2 Pm ai 

dynamic pressure (pm, & P(/pm are global constants) 
volume velocity (AT is the area of the initial tube bore) 
mean temperature in terms of initial temperature 
x position 
inner radius of tube in terms of initial radius 
transverse y position in stack channel 
stack plate thickness d in terms of plate gap y0 

power density 
power 

Nz = Np/Nu = YPn/CAp a]) acoustic impedance 
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Normalized Variables & Parameters 
Note: Bold capital sans serif symbols are normalized (dimensionless) 
P    = p/Po dynamic pressure variable 
U    = Uj/Nu volume velocity variable 
T    = Tm/TmI mean temperature variable 
X    = kjX x position variable 
R    = rjrwl inner radius variable or parameter 
Y    = yJ&Ki stack plate gap parameter 
L    = l/y0 stack plate thickness parameter 
H2  = H2(l+L)(rwI/rst) /Np stack enthalpy parameter (rst is stack radius) 
K    = (K+LKgJkjTnjj/NpD    longitudinal thermal conduction parameter in stack 

W2 = Re(PU) acoustic work power; Not normalized is W2 = NPRe(PU) 

Ideal Gas Relationships 

For an ideal gas, the thermal expansion coefficient ß can be ehminated 

with, 

Tmß = 1, where Tm is expressed in absolute units. 

The sound speed a can be expressed as, 
o —1/2 a   = YPn/Pm > where a(Tm) = ar T       gives the temperature dependence. 

The gas specific heat cp is given by the following relation, 

Pmcp = 
f   y   A 

/ j    m 

Stack Equations 

The following equation is the Rott wave equation modified by Swift for 

acoustic propagation in channels formed by parallel plates (the stack) where the 

plates may have a temperature gradient. 
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{x i (7-1)/. 
l+e. 

Pi + 
py d (i-fv&A 

co    dx 
V 

dx 
ß a

2      fK-fv      dTmdPl 

CO2 (l-cr)(l + £J.) dx   dx 
:0 

fy = 

fK = 

tanh[(l + /)y0/<?y] 

tanh[(l + i)V«U 

£. = 

0 + OV$c 

_jKpmcptmh[(l + i)y0/SK] 

jKsPscstanh[(l + i)y0/ös] 

a = cpßlK=vl K 

ö=JlKlCO 

Öv=j2v/o) 

While this equation is accurate for liquids as an acoustic medium, we will 

restrict ourselves to gaseous media and use ideal gas relationships.   Simplifying 

the equation with ideal gas relationships and normalized variables, the result is, 

l + e. 
P+ (l + /v)+l(l + ygrXfv+tanh2770-l)-ri 

f*f*    , 
2 (1-aXl + fJ 

"T-P + 0_/r)r^.o 
dXdX dX2 

where r\0 = (l+i)(yjbv), and ßr is defined by Rott so as to express the temperature 
ßr 

dependence of the dynamic viscosity p. as u = ^T . 
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The 2nd order enthalpy (H2) or energy equation developed by Rott and 

Swift is, 

2copm 

ny0cP 

dpx 
P\ i-/v- dx 

dTm dp{ dp{ 

Tmß(fK-fv) 

2co3pm(l-a)  dx   dx   dx 

xlm /v + 
(fK-fvW+e,fv'fK) 

-U(y0K + lKs)- 

(l + fjd + a) 

dT„ 

dx 
(~ denotes complex conjugate) 

The energy flow H2 in a thermally insulated stack is a constant for a steady state 

solution. This energy constant must either specified, or guessed and solved in 

the model. The last local state variable for which we need an equation, is the 

temperature. So the energy equation can be rearranged to express the 

temperature derivative in terms the energy constant and acoustical variables, 

instead of the above form. If ideal gas identities and normalized state variables 

are also used, then resulting equation becomes, 

Tim 
dJ 
dX 

dP   < 
dX l-/v- 

f*-fv ^ -H, 

(r-i*-*) 
dP 
dX 

Im !    7    (ft-fvlk + e.fv'f*) 
(\ + £jl + a) 

+ K 

Tube Equations 

Note: The derivative of the tube radius function may be discontinuous (i.e. 

the slope or angle of the tube bore), the tube radius function may NOT be 

discontinuous. 
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The dimensionless equations are two first order complex equations. (P is 

normalized acoustic pressure & X = k x.) 

P\ = Q(x)/f2 Q' = -fiPi 

where Q(x) = f2 (dP/dX), fx = R2
W[1 + (y-l)f ], f2 = R2

wd-f), Rw s rw/rwI, 

27,(i77j 
f = f(ijj=; ■, f = flVa nw). Also T|w S (l+i)(rw/8v) and Va nw = (1+iXryöJ. 

The primes denote derivatives with respect to normalized position. The quantity 

rw is the radius at the (inner) tube wall & rwI is the initial or nominal tube radius. 

Jn(z) are Bessel functions of complex argument. U^x) = (i/y)(7tr2
wI)(p0/pm)(aQ), or 

Ux = i Q. 

This relates the normalized volume velocity to Q. The Prandtl number is c, 6V is 

the viscous penetration depth, and 5K is the thermal penetration depth. 

Curved Section Tube Tapers 

center line 

Now the subscript 's' stands for 'small' at the starting end, & 'H' stands for 

'large' at the finishing end, & and 'o' stands for a set of 'fictitious' coordinates 

that facilitate the solution. 

■    r(x) = r0 + R(l-cos0) so that rs = r0 + R(l-cos0s) & rf = r0 + R(l-cos0f). 

Subtracting the last two equations we obtain, 

R = (r(-rs)/(cos0s-cos0{) and r0 = rs - R(l-cos0s). 
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As before, the solution we want has the form 

f 
r(x) = r0+R 1-Jl- 

(x-xj2 

V R' 
, but we don't know the value of x0. Since 

X5-x0 = Rsin0s, we can write x-x0 = (x-xs) + Rsin0s. Thus the solution 

becomes 

/ 

r(x)=r0+R 2        (x-x)2     2sin# O-xJ 
l-JcoszÖ - 

V 
R2 R 

We still need to know where the solution stops in the x coordinate. 

x(-xs = R(sin0{- sin9s). 

The final normalized versions are: 

X{ - Xs = k[R(sin0{ - sin0s), and 

R.-i+-£ 
f 

2a     (X-XS)
2
     2sinöI(X-XJ) 

l-Jcos'0. 

v 
(k,R)2 k,R 

LUMPED ELEMENTS 

Rigid Termination 

In cases where the acoustic velocity is zero or very small, the thermal 

conduction at the interface of rigid stationary solid surface (with a large 

KsPscs,) gives an acoustic impedance of, 

Z,= 
-2 f   ..   \ 

A   4ii akSS 

If we cast this as a normalized volume velocity, we obtain, 

U = -44(l+iXY-l) kA P (S/Ap), 

where S is the solid area exposed. 
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SfTlflU VolllTTIft 

The impedance of an idealized, acoustically small gas volume is, 

ZA = iYPn/wV, 

ignoring surface effects, where V is the volume. To include thermal 

conduction at the rigid surface we use the "rigid termination" solution. The 

answer is that the total volume velocity is the sum of the idealized volume 

velocity and the volume velocity at the rigid termination of the wall. 

Normalized this becomes, 

Usv = -i k, P (V/Ar) - %(l+i)(Y-l) k^ P (S/Ap) 

Capillary 

Assume that a given acoustic pressure drives one end of a capillary, 

and that the dynamic pressure is zero at the opposite end. Also, assume that 

the length £ is very short relative to a wavelength. Then the impedance of the 

capillary is, 

ZA = 
7Pn 

CO v5  j 
1 — 2  JjiiTJo) 

where S is the area of the bore of the capillary and rj0 = (l+i)(rc/8v) with r0 

being the capillary radius. The normalized volume velocity can be expressed 

as, 

U = 
k,l 

1- 2   /,(»70) 

where the temperature dependence has been made explicit. The capillary can 

be combined with other lumped elements by adding its volume velocity with 

that of the other component, as was done previously with the small volume 

combined with its surface conduction effects. 
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Radiation Impedance 

For a vibrating unflanged rigid piston, the radiation impedance 

(mechanical) is given by, 

Zm = pma S [^(kr)2 + 0.6 i kr], [Ref. 10: Chap. 9] 

where k is the wavenumber, r is the piston radius and <S is the piston area. 

The acoustic impedance in an ideal gas is then, 

ZA = Zm/S2 = Cypm/aS) [i/4(kr)2+ 0.6 i kr]. 

Since the sound speed and wavenumber are temperature dependent, 

normalization requires that this dependence be made explicit. The 

normalized form of the radiation impedance is then, 

zA = 1/4(1^/ rm + o.6 i (kr/R) r1. 
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